

PROGRAMA DE UNIDAD DE APRENDIZAJE

1. Datos Generales de la Unidad de Aprendizaje

Nombre de la Unidad de Aprendizaje	Clave	Semestre
Física IV	6-UAPA-IA-57	6°

Carácter Obligatoria-área propedéutica	Tipo	Teórico-Práctico
--	------	------------------

Unidades de Aprendizaje antecedentes	Unidades de Aprendizaje consecuentes
Física I	
Física II	
Física III	

Horas teóricas	Horas prácticas	Total de horas por semana	Semanas por semestre	Total de horas por semestre	Valor en créditos
3	1	4	16	64	8

Autores del programa	Fecha de elaboración	Fecha de visto bueno del Consejo Académico de Bachillerato
Cira Pérez Juvenal	27 de Agosto de 2020	2 de febrero de 2021
Martínez Basurto Aarón Moisés		
Reyes Ramírez Pablo Cesar		
Romero Abonce Juan Carlos		
Soto Zaragoza José Luis Tea Ruiz Pablo Abraham Torres Morales Mario Rey Zavala Cerda Alberto		

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO COORDINACIÓN GENERAL DE LA DIVISIÓN DEL BACHILLERATO PROGRAMA DE UNIDAD DE APRENDIZAJE

Revisores del programa	Fecha de revisión	Porcentaje de ajuste	Fecha de visto bueno del Consejo Académico de Bachillerato

2. Presentación de la Unidad de Aprendizaje.

Propósito y vinculación con el perfil del egresado (justificación de la UA)

Aplica sus conocimientos acerca del movimiento ondulatorio y de la óptica, en la explicación de fenómenos, experimentos, aplicaciones y prototipos.

Aborda de manera inicial los conceptos de la Física Moderna y comenta el desarrollo del tema hasta la actualidad, teniendo una actitud crítica y con razonamientos respaldados en el método científico.

Aplica estrategias creativas y de transversalidad en la resolución de problemas relacionados con el uso de la Física y otras áreas del conocimiento.

Por tanto, se vincula de manera directa con las siguientes competencias genéricas del perfil del egresado:

- ✓ Se conoce a sí mismo, valorando sus fortalezas y debilidades, para estar en constante crecimiento personal siendo autocrítico y reflexivo.
- ✓ Enfrenta los problemas y retos que se le presentan en su vida cotidiana, de manera creativa conforme a su contexto social, económico y político.
- ✓ Autogestiona su aprendizaje para adquirir conocimientos y desarrollar el pensamiento crítico y creativo a partir de una planeación y ejecución responsables a lo largo de la vida.
- ✓ Diseña y desarrolla proyectos multidisciplinarios e innovadores que respondan al contexto, con responsabilidad social.
- ✓ Trabaja en equipo de manera colaborativa y respetuosa para desarrollar diversas tareas que correspondan a su edad y entorno, con un enfoque hacia el bien común.
- ✓ Establece relaciones empáticas y solidarias con los demás, para favorecer el diálogo asertivo que le permita afrontar los conflictos de manera pacífica.
- ✓ Aplica estrategias en la búsqueda, organización y procesamiento de información para la resolución de problemas en distintos ámbitos de su vida, mediante la utilización de diversas herramientas de investigación documental y de campo, con una actitud crítica.

PROGRAMA DE UNIDAD DE APRENDIZAJE

- Comunica con claridad sus ideas de manera oral y escrita en español, utilizando diversos medios, con el fin de establecer interacciones sociales y difundir el conocimiento.
- ✓ Desarrolla habilidades en el uso responsable de las tecnologías de la información y la comunicación para resolver problemas reales con destreza y creatividad.

Propuesta didáctico-metodológica	
Presencial:	Virtual:
✓ Clase magistral	 ✓ Análisis de videos de fenómenos físicos y de la historia de la física
✓ Debates	HISTORIA de la HSICA
✓ Exposiciones en equipo	
✓ Prácticas de laboratorio	

Descripción de actividades específicas en las que incorporará al menos dos de los tópicos de formación integral: identidad nicolaita, responsabilidad social, ética, género, educación inclusiva

Realización de un proyecto final, en donde se integran los conocimientos y habilidades adquiridas en la materia de Física y en conjunto de por lo menos una asignatura más, mediante un proyecto en equipo, en donde se resuelva alguna necesidad o aplicación en su entorno

3. Competencias a desarrollar

Eje formativo
Formativo básico
Competencias disciplinares
Comprende los fenómenos físicos a través de las leyes y teorías científicas y sus aplicaciones para la solución de problemas en todos los ámbitos de la vida misma

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO COORDINACIÓN GENERAL DE LA DIVISIÓN DEL BACHILLERATO PROGRAMA DE UNIDAD DE APRENDIZAJE

4. Perfil académico del docente

Grado académico:	Licenciatura en Físico-matemáticas, Arquitectura, Ingeniería en cualquier área o carreras afines.
Experiencia:	Por lo menos dos años de experiencia académica en el área (docencia o investigación).

5. Temas y subtemas

Temas	Subtemas
Movimiento Ondulatorio	 1.1. Elasticidad y oscilaciones Deformaciones elásticas de sólidos Ley de Hooke para fuerzas de tensión y compresión Movimiento armónico simple (MAS) El periodo y la frecuencia en el MAS Análisis gráfico del MAS El péndulo Oscilaciones amortiguadas Oscilaciones forzadas y resonancia 1.2. Ondas mecánicas Ondas y transporte de energía Ondas transversales y longitudinales

PROGRAMA DE UNIDAD DE APRENDIZAJE

	 Rapidez de las ondas transversales en una cuerda Ondas periódicas Principio de superposición Reflexión y refracción Interferencia y difracción Ondas estacionarias
2. Acústica	 Ondas sonoras Velocidad de las ondas sonoras Amplitud e intensidad de las ondas Ondas sonoras estacionarias Timbre El oído humano Batimiento El efecto Doppler Ondas de choque
3. Óptica	3.1. Luz e iluminación Concepto de luz Propiedades de la Luz Espectro electromagnético Fuentes de ondas y rayos 3.2. Óptica geométrica y física Principio de Huygens Óptica geométrica Reflexión de la luz Leyes de reflexión Reflexión y transmisión Refracción de la luz y la Ley de Snell Leyes de refracción Dispersión en un prisma Reflexión interna total

Coordinación General de la División del Bachillerato UMSNH

PROGRAMA DE UNIDAD DE APRENDIZAJE

	 Fibra óptica Óptica física Polarización Interferencia Experimento de doble rejilla de Young Difracción Difracción y principio de Huygens Difracción por medio de una sola rendija Intensidades de los máximos en la interferencia de doble rendija
	 3.3. Formación de imágenes e instrumentos ópticos Formación de imágenes mediante reflexión o refracción Espejos planos Espejos esféricos Lentes delgadas Lentes en combinación Cámaras El ojo El lente de aumento simple Microscopios compuestos Telescopios
4. Física Moderna	4.1. Fenómenos mecánicos que no se explican con la física clásica Ecuaciones de Maxwell La catástrofe ultravioleta Espectros de emisión y absorción discontinuos de algunos gases 4.2. Teoría de la relatividad especial Postulados de Einstein Principio de correspondencia Simultaneidad y observadores ideales Dilatación del tiempo Contracción de la longitud

PROGRAMA DE UNIDAD DE APRENDIZAJE

	 Velocidades en diferentes marcos de referencia Masa y energía
	 4.3. Inicios de la física cuántica y el fotón Cuantización El efecto fotoeléctrico El fotón La teoría del fotón explica el efecto fotoeléctrico Aplicaciones del efecto fotoeléctrico Producción de rayos X Rayos X característicos Modelo de Bohr Fluorescencia, fosforescencia y quimiluminescencia
	 4.4. Física cuántica Dualidad onda partícula Probabilidad Ondas materiales Difracción de electrones Principio de incertidumbre
5. Proyecto final integrador	Realización de un proyecto en trabajo colaborativo, con uso de la Física y algún otro campo del conocimiento, en alguna aplicación práctica de su interés.

PROGRAMA DE UNIDAD DE APRENDIZAJE

6. Criterios de evaluación

CRITERIOS A EVALUAR	PORCENTAJE
Exámenes escritos	40%
Tareas	10%
Proyecto final	30%
Laboratorio	20%
Porcentaje final	100%

7. Fuentes de información

Básica:

Altarriba, E. y Ferrón, S. (2017). Mi primer libro de física cuántica. Juventud Infantil

Bauer, W. (2014). Física para Ingeniería y ciencias con Física moderna. 2a Edición. Mc Graw Hill

Clegg, B. (2017). Biblia de la Física cuántica, la. guía de viaje a través de 200 años de ciencia subatómica. Gaia Ediciones.

Flores, E. y Figueroa, J. (2006). Física Moderna. Prentice Hall

Gil, S. (2017). Experimentos de Física usando TIC y elementos de bajo costo. Electromagnetismo, ondas, fluidos y termodinámica. Alfaomega Grupo Editor

Hecht, E. (2016). Optica. 5a Ed. Pearson

Picquart, M. (2017). Vibraciones y ondas. Trillas

Schaposnik, F. (2015). Que es la física cuántica. Paidos

Serway y Jewett (2018). Física para ciencias e Ingeniería. 10a Edición. Cengage/Thomson

PROGRAMA DE UNIDAD DE APRENDIZAJE

Complementaria:

Alvarenga y Máximo. (1998). Física General. 4a edición. México: Oxford University Press México SA de CV

Bueche y Hecht. (2007). Física General, 10a edición. México: McGraw Hill

Giambattista, McCarthy y Richardson. (2009). Física. México: McGrawHill

Hewitt, P. (2016) Física Conceptual. Decimosegunda Edición. Pearson Educación

Ruelas y Velazquez (2016). Fundamentos de Física. México: McGrawHill

Serway y Vuille (2018). Fundamentos de Física. 10a. Edición. Cengage/Thomson

Tippens, P. (2020). Física. Conceptos y aplicaciones. Octava Edición. México: McGraw Hill

Peraza, A. y Torres, P. (2008). Elementos De Fisica Moderna. Trillas

Pérez, H. (2018). Física General. 6a Edición. México. Grupo Editorial Patria.

Thorndike, R. L. y Hagen, E. P. (1989). Medición y evaluación en psicología y educación (2a. ed.). Distrito Federal, México: Trillas.